Recall Long Division:

a.

Polynomial Long Division:

6. Divide
$$f(x) = 3x^4 - 5x^3 + 4x - 6$$
 by $(x^2 - 3x + 5)$ c. Divide $f(x) = 6m^4 - 12m^3 + m - 2$ by $(m - 2)$

c. Divide
$$f(x) = 6m^4 - 12m^3 + m - 2 by (m - 2)$$

You Try!: d. Divide
$$n^4 + 3n^3 - 7n^2 - 21n$$
 by $(n + 3)$

Synthetic Division

Synthetic Division is a method for dividing polynomials that is quicker and more efficient:

Examples:

e. Divide
$$f(x) = x^3 + 5x^2 - 7x + 2$$
 by $x - 2$

f. Determine if (x + 3) is a factor of $(x) = 2x^3 + x^2 - 8x + 21$ by using synthetic division. If so, find the other factors.

Remainder Theorem:

If a polynomial f(x) is divided by x - k, then the remainder is r = f(k).

Factor Theorem:

A polynomial f(x) has a factor of x - k if and only if f(k) = 0.

Finding zeros/roots/factors:

Suppose you know that (x + 9) is a factor of the function $f(x) = x^3 + 2x^2 - 51x + 108$. Factor f(x) completely.

Suppose you know that x = -2 is a zero of the function $f(x) = x^3 + 2x^2 - 9x - 18$. Find the other zeros.

So one day you are playing around with the function $f(x) = 4x^3 + 15x^2 - 63x - 54$ and you notice that f(-6) = 0. Find the all of the zeros.

Application!

Suppose the profit P (in millions of dollars) for a new Algebros T-shirt manufacturer can be modeled by $P = -x^3 + 4x^2 + x$ where x is the number of Bro-Shirts made (in millions). Currently the company produces 4 million shirts and makes a profit of \$4,000,000. Can the company make a lesser number of bro-shirts and still make the same profit?

Divide using polynomial long division.

1)
$$(x^3 + 14x^2 + 55x + 48) \div (x + 6)$$

2)
$$(x^4 - 61x^2 - 26x + 16) \div (x - 8)$$

3)
$$(10a^4 + 60a^3 + 10a + 60) \div (a + 6)$$

4)
$$(n^3 + 10n^2 + 30n + 72) \div (n + 7)$$

Divide using synthetic division.

5)
$$(n^4 + 3n^3 - 9n - 38) \div (n+3)$$

6)
$$(a^4 - 4a^3 + 5a^2 + 8a - 14) \div (a - 2)$$

7)
$$(4a^3 - 36a^2 + 60a + 72) \div (a - 6)$$

8)
$$(x^4 + 16x^3 + 75x^2 + 91x + 49) \div (x + 7)$$

Use the Factor Theorem to determine whether the given binomial is a factor of the given polynomial.

9)
$$(n^3 + 16n^2 + 71n + 56) \div (n + 8)$$

10)
$$(n^4 + 7n^3 - 25n^2 + 22n - 25) \div (n-2)$$

11)
$$(m^4 - 17m^3 + 78m^2 - 47m - 63) \div (m - 7)$$
 12) $(v^4 - 6v^3 - 35v^2 + 26v + 20) \div (v + 4)$

12)
$$(v^4 - 6v^3 - 35v^2 + 26v + 20) \div (v + 4)$$

Given a polynomial f(x) and a factor of f(x), factor f(x) completely.

13)
$$f(x) = 25x^3 - 40x^2 + 17x - 2$$
; $5x - 2$

13)
$$f(x) = 25x^3 - 40x^2 + 17x - 2$$
; $5x - 2$ 14) $f(x) = 5x^3 - 18x^2 - 33x - 10$; $x - 5$

15)
$$f(x) = 15x^3 - 28x^2 + 15x - 2$$
; $3x - 2$

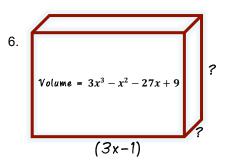
16)
$$f(x) = 9x^3 + 3x^2 - 5x + 1$$
; $3x - 1$

Application 7.5

1. If
$$f(x) = 6x^3 + 7x^2 - 18x + 5$$
 and one factor of $f(x)$ is $(x - 1)$, completely factor $f(x)$.

2. Is
$$m = 7$$
 a zero of $f(m) = m^4 - 8m^3 + 7m^2$?

Synthetic division clearly simplifies the long division process for dividing by a linear expression (x - a), but is there a way to use synthetic division when dividing by a linear expression of the form (ax - b) where a > 1?

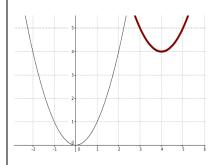

3. Use long division to divide
$$6x^3 - 11x^2 - 5x + 12$$
 by $(2x - 3)$.

4. Use synthetic division to divide
$$6x^3 - 11x^2 - 5x + 12$$
 by $\left(x - \frac{3}{2}\right)$

5. Compare the quotients you calculated in #3 and #4 and the factors (2x - 3) and $(x - \frac{3}{2})$ that you divided by. Now, explain how to use synthetic division to divide by a linear expression of the form (ax - b) where a > 1.

Find the missing dimensions:

5. ? Area =
$$w^3 - 15w^2 + 57w - 70$$
 $(\omega - 10)$



SOLVE

GRAPH

Below, the graph of $f(x) = (x - 4)^2 + 4$ is sketched in bold. Its parent function $f(x) = x^2$ is represented by the thin curve.

- 1. Describe the translation of the parent graph.
- 2. How does the translation relate to the equation?

Algebra Skillz

SIMPLIFY

3.
$$\sqrt{45} + \sqrt{80} + \sqrt{500}$$

5. Solve:

$$4(x-1)(2x-3) = 0$$

4.
$$\sqrt{3}(10-2\sqrt{5})$$

6. Factor and solve.
$$2x^2 + 5x - 3 = 0$$

SAT Review

MUTIPLE CHOICE

Determine the number of zeros that are positive integers for the function:

$$f(x) = 6x^3 - x^2 - 12x - 5$$

- (A) 0
- (B) 1
- (C) 2
- (E) Cannot be determined

Free Response

What is the remainder when $x^6 - 4x^4 + 4x^2 - 10$ is divided by (x - 3)?

		_	
\odot	90	90	\odot
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
(5)	(3)	(5)	(5)
6	(6)	(6)	⊚
\bigcirc	\bigcirc	7	7
8	(8)	(8)	(8)
(9	9	9