Unit 11 Review – Conic Sections

1. Find the distance between (-6, -3) and (-3, 3). Round your answer to 3 decimals.

2. Find the midpoint between (-5,1) and (3,-8).

3. Find the equation of the perpendicular bisector between (1,5)

4. Sketch the graph of $(y+1)^2 = -8(x-4)$ and identify the given information.

Coordinate of vertex: (4, -1)

4P=-8

Direction it opens:

Axis of symmetry:

Coordinate of focus: (2 - 1)

Equation of directrix: $\times -6$

5. Find an equation for the parabola that has a focus at (-2,3) and a directrix at x=2.

Vertex: (0,3)

6. (2, -3) is a point on a circle whose center is at the origin. Write an equation of the line tangent to the circle at the given point. $M = -\frac{1}{2}$

7. Write an equation for a circle whose center is at (-8,2) and has a radius of 8.

(x+8)+(y-2)=64

8. Sketch the graph of $9(x+3)^2 + 4(y-2)^2 = 36$ and identify the coordinate points for each of the following.

Center: $\left(-3,2\right)$

Vertices: (-3,-1)(-3,5) 6=3 6=2

Co-vertices: (-5, 2) (-1, 2)

Foci: $\left(-3, 2 \pm \sqrt{5}\right)$

10. Write an equation for an ellipse given the following. Vertices: (9,4), (-1,4)

Vertices: (9,4), (-1,4)Foci: (7,4), (1,4)

$$(enter:(4,4))$$
 $a=5$
 $c=3$
 $c=3$
 $c=6$

$$\frac{16 = 12^{2}}{(x-4)^{2}} + \frac{(y-4)^{2}}{16} = 1$$

11. Write an equation for a hyperbola given the following. Vertices: (1,5), (-19,5)
Endpoints of Conjugate Axis:

$$\frac{(x+9)^2}{100} - \frac{(5-5)^2}{36} = 1$$

12. Write an equation of the hyperbola.

13. Rewrite into conic section standard form and classify the conic.

$$9x^{2}-25y^{2}-50y-250=0$$

$$9x^{2}-25(y^{2}+2y+1)=250$$

$$9x^{2}-25(y+1)^{2}=250$$

$$2x^{2}-25(y+1)^{2}=250$$

14. The cross section of a solar oven is a parabola. The heating point is located at the focus, 2.5 feet above the vertex and the oven is 4 feet across. Assume the vertex is at the origin. How deep is the oven? (Hint: write an equation and solve for y.)

15. The center cross section of a rope pulley forms a hyperbolic shape for the outline of the concaved groove. The horizontal transverse axis of the hyperbolic outline has a distance of 8 centimeters from vertex to vertex and the foci are $2\sqrt{6}$ centimeters from the center. Write an equation that models

2 x