UNIT 3 Absolute Value and Piecewise Functions

NAME:_____

REVIEW

DATE:_____

Use the piecewise function to evaluate the following.		Graph the following piecewise functions.
8.		9.
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	a. <i>f</i> (2) =	$f(x) = \begin{cases} \frac{1}{3}x + 5, & x \le 0\\ 6 - 2x, & x > 0 \end{cases}$
2	b. $f(-3) =$	
	c. $f(-2) =$	
	d. $f(1) =$	

Application

VERBALLY	ALGEBRAICALLY	
Admission into a secret math society requires the	A snowstorm hits the KMCC and is modeled by the	
applicant be between the ages of 32 and 46. Which of the	function below where <i>t</i> is the time in hours and <i>r</i> is	
following inequalities can be used to determine whether	snowfall rate in inches per hour.	
an applicant's age, a, satisfies the requirements for the	r(t) = -0.5 t - 4 + 2	
society?		
	a. Find $r(3)$. What does this mean?	
(A) $ a - 7 < 39$		
(B) $ a + 39 < 7$		
(C) a + 32 < 46		
(0) a - 39 < 7	b What is the maximum snowfall rate?	
(b) $ a - 35 < 7$ (F) $ a - 46 < 7$	b. What is the maximum showran rate:	
(E) $ u - 40 < 7$		
	a When will the enoughall rate he 1 inch ner hour?	
	c. when whi the showran rate be r men per nour?	
NUMERICALLY \mathbf{F}	GRAPHICALLY Check out the suggestion bridge below that is suggested	
Fill in the table using the function $f(x) = 2 x - 3$.	Check out the suspension bridge below that is suspended	
	from two towers. Write an absolute value function that	
	represents the inverted V-shaped portion of one tower.	
$\begin{array}{c c} x & f(x) \end{array}$		
-2	(69, 140)	
0		
5		
6		
-0		
	(0, 0) (138, 0)	
-1	(0, 0)	