UNIT 3 Absolute Value and Piecewise Functions

NAME:		

CORRECTIVE ASSIGNMENT

DATE:_____

Use the piecewise function to evaluate the following.				Graph the following piecewise functions.			
8.				9.			
		a. <i>f</i> (2) =		$f(x) = \begin{cases} \frac{2}{3}x - 2, \\ 6 - x, \end{cases}$	$\begin{array}{l} x \leq 0 \\ x > 0 \end{array}$		
-4 -3 -2 -1		b. $f(-1) =$					
		c. <i>f</i> (0) =			► • • • • • • • • • • • • • • • • • • •		
		d. $f(1) =$					
		Appli	cation				
	VERBALLY			ALGEBRA	ICALLY		
10. Admission into a secret math society requires the			11. Mr. Kelly enters a 24 hour Pokémon competition				
applicant be between the	he ages of 30 and 50.	Which of the	modeled by the function below where t is the time in hours				
following inequalities of	can be used to determ	ine whether	and c is his total number of cards (in thousands).				
an applicant's age, a , so	atisfies the requireme	ents for the		c(t) = -2.25 t	z - 10 + 80		
society?		a Find $a(5)$ What does this mean?					
(A) $ a - 10 < 50$		a. This $\mathcal{C}(3)$. What does this mean?					
$\begin{array}{c c} (11) & a & b & c \\ (B) & a + 50 < 10 \end{array}$		b. What is the maximum cards Kelly will have?					
(C) a+30 < 40							
(D) $ a - 40 < 10$			c. When will Kelly have 52 thousand cards?				
(E) $ a - 50 < 10$							
		СРАРИСАЦ У					
12 Fill in the table using the function $f(x) = 2 x - 3 $		13. Check out the suspension bridge below that is					
		suspended from two towers. Write an absolute value					
			function that	at represents the inve	erted V-shaped portion of		
	$\begin{array}{c c} x & f(x) \\ \hline \end{array}$		one tower.				
	-2				(
	0				(60,150)		
	5						
	-6						
	20			(0.0)	(120, 0)		
	8			(0, 0)			
CORRECTIVE ASSIGNMENT ANSWERS							
1	$2 r \leq -4 OB r > 0$	$3 r < -\frac{2}{2} OF$	$r > \frac{10}{4}$	R:	<u>Б</u>		
⊥. -8-/-6-3-4-3-2-10123436/8	2. 2 10 10 10		· <i>π</i> <u>−</u> 3		5.		
	7 2 1 22	-8-7-6-5-4-3-2-10	1 2 3 4 5 6 7 8				
6. yes	7. a. $\frac{-}{3}$ D. 22	8. a. U D4					
$y \ge - x+3 +1$	c. 1 d.14	c3 d1					
9.	10. D	11. a. After 5 ho has 68.75 cards (68,7 b. 80 thousa	burs Kelly 12. thousand 50 cards)	$ \begin{array}{c cccc} x & f(x) \\ -2 & 10 \\ 0 & 6 \\ 5 & 4 \\ -6 & 18 \\ \hline -6 & 20 \\ \end{array} $	13. $y = -\frac{5}{2} x - 60 + 150$		
		c. 22. 4 hour	S	-7 13 20 -1 7 8			

-

. .

• .