NAME:			
8.3 Perform Function Operations and Composition of Functions			
(x) = 2x + 4			
Subtraction:			
Division:			
g(×) =			
Ex 2:			
g(×) =			
Ex 4:			
Composition of a function:			
g(x) =			
g(x) - Ex 6: Ex 7:			

	f(x) =	g(×) =	
Ex 8:		Ex 9:	
	f(x) =	g(x) =	
Ex 10:		Ex 11:	
Ex 12:		Ex 13:	
Try These:	f(x) =	a(x) =	
Try These: 1)	f(x) =	g(x) = 2)	
	f(x) =		
	f(x) =		
1)	f(x) =	2)	
	f(x) =		
1)	f(x) =	2)	
1)	f(x) =	2)	
1) 3)	f(x) = your notes:	2)	
1) 3)		2)	

Algebra Skillz		
Below, the parent function $f(x) = x $ is represented	6	5) Factor:
by the bold graph.	4) $\frac{1}{\sqrt{32}}$	$12b^3 - 56b^2 - 96b$
Write the equation of the function represented by the thin graph.	$3)\frac{\sqrt{12}}{2\sqrt{6}}$	6) Factor and solve. $2x^2 - 15 = -7x$

8.3 Practice Problems

Directions: Let $f(x) = -3x^{1/3} + 4x^{1/3}$	f^{2} and $g(x) = 5x^{1/3} + 4x^{1/2}$. Perform	the indicated operation.
1) f(x) + g(x)	2) g(x) - f(x)	3) f(x) - g(x)
Directions:Let $f(x) = 2x^2$ and $g(x) =$	= 5x - 4. Perform the indicated operat	ion.
4) $f(x) \cdot g(x)$	5) $\frac{f(x)}{g(x)}$	6) f(x) - g(x)
	= 2x + 3. Perform the indicated operati	
7) $f(x) \cdot g(x)$	8) g(x) - f(x)	9) f(x) - g(x)

Directions: Let $f(x) = 4x - 3$, g	$(x) = -x^2$ and $h(x) = \frac{x-5}{2}$. Find	the indicated value.
10) f(g(2))	11) g(f(2))	12) g(h(-3))
13) h(f(2))	14) h(g(-4))	15) f(h(-8))
Directions: Let $f(x) = 2x^2 - 3x$,	g(x) = 3x + 2, and $h(x) = 2x - 9$). Find the indicated operation.
16) f(g(x))	17) h(g(x))	18) g(f(x))
	$(x) = 3x - 2$, and $h(x) = -x^2$. F	
19) f(g(x))	20) g(f(x))	21) f(h(x))

8.3 Application and Extension

2) f(g(x))

Directions: Let $f(x) = 3x^2 - x$, g(x) = 2x + 6 and h(x) = -5x - 3 Perform the indicated operation.

1) $g(x) \cdot h(x)$

SAT PREP Below are sample SAT questions. The SAT is the main standardized test that colleges look at for admission. One is multiple choices; the other is free response where you must grid in your answer. Blow it up.

MULITPLE CHOICE	GRID IN
If <i>n</i> and <i>p</i> are positive integers and $3^{n/p} = \sqrt[3]{81}$, then the	If $p^m \cdot p^6 = p^{30}$, and $(p^{-2})^n = p^{-42}$, what is the value of <i>m</i> -n?
product of <i>n</i> and <i>p</i> is:	
(A) -1	
(A) -1 (B) O	
(C) 4	
(D) 8	$\begin{array}{c} (3) (3) (3) \\ (4) (4) (4) \\ ($
(E) 12	6666
	<u>.</u>

3) Globus Relief was founded in 1996 by successful business entrepreneurs devoted to helping those in need, with a mission to redirect useable health resources locally and globally. Globus Relief is a major force for good, creating a reliable humanitarian supply chain that has provided over \$200 million worth of soft medical goods, instrumentation, medical equipment and other health related products. The cost (in dollars) of making x medical apparatuses in a factory is modeled by the function C(x) = 60x + 750. The number of apparatuses produced in t hours is modeled by the function x(t) = 50t.

a) Find C(x(t))

b) Find C(x(5)). What does it represent?

4) Brust, Kelly and Bean each are making Algebro T-shirts. They believe that kids will want to buy them. Brust's profit in terms of t, t-shirts sold, is modeled by the function $B(t) = 3t^3 - 2t^2 + 123.3$. Kelly's profit in terms of t, t-shirts sold, is modeled by the function K(t) = 2t + 23 and Bean's profit in terms of t, t-shirts sold, is modeled by the function $S(t) = 2t^2 - 5t$. Kelly and Bean team up because Brust is killing them in profit.

a) Kelly believes if they work together their profit can be modeled by $H(t) = K(t) \cdot S(t)$. Find the new function.

b) Bean believes if they work together their profit will be modeled by G(t) = K(t) + S(t). Find the new function.

c) Find B(100), G(100) and H(100) to see which model will be the most profitable.