10.1 Graph Rational Functions

RATIONAL FUNCTIONS -

Vertical asymp	ototes =	· ·	
	Power	on bottom is bigger:	
Horizontal asy	mptotes = -	on top is bigger:	
	Power	s are the same:	
Power on bottom	is bigger! Powe	r on top is bigger! Powers are the same	
$y = \frac{2x + x}{x^2 - 4x}$	$\frac{3}{-32}$ $f(x)$	$=\frac{x^2+2x-15}{4x-9} \qquad \qquad y=\frac{x^2+5x-36}{3x^2+21x}$	
VA:	VA:	VA:	
HA:	HA:	HA:	
<i>x</i> -intercept(s)	=	intercepts:	
y-intercept = $f(x) = \frac{2x+3}{x^2-4x-32}$		$y = \frac{x^2 + 5x - 36}{3x^2 + 21x}$	
<i>x</i> -intercept(s):		<i>x</i> -intercept(s):	
<i>y</i> -intercept:		<i>y</i> -intercept:	
Fin	d asymptotes and	intercepts. Then graph!	
$f(x) = \frac{3}{x}$	$\frac{x-5}{2-9}$		
VA:	<i>x</i> -int:		
HA:	y-int:		

SUMMARY: Now, summarize your notes here!

10.1 Graph Rational Functions

PRACTICE

Algebra Skillz		
GRAPH	SIMPLIFY	SOLVE
1. Sketch a graph of $f(x) = \sqrt{x+3} - 5$	2. $\sqrt{2}(2+4\sqrt{5})$	4. Factor: $3x^2 - 27$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. $(5 + \sqrt{7})(3 - \sqrt{2})$	5. Solve by factoring. $x^2 - 12x + 36 = 0$
-7		

10.1 Graph Rational Functions

3. **POKER FACE** Let's up the ante. This isn't a rational function because the functions in the numerator and denominator are not polynomials. Luckily, we can still find the asymptotes and intercepts.

$$f(x) = \frac{e^x - 3}{|2x - 5| - 4}$$

VA: (SHOW WORK!)

x-intercept(s): (SHOW WORK!)

HA: (graph on the calculator to find this!)

y-intercept: (SHOW WORK!)

4. **DOUBLE VISION** Some rational functions have two different horizontal asymptotes. Are you serious? So we really need to look at the end behavior of the function. Use your calculator to find both horizontal asymptotes.

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

Horizontal Asymptotes: (fill in the questions marks)

Left End Behavior	Right End Behavior
$\chi \to -\infty$	$\chi ightarrow \infty$
$f(x) \rightarrow ?$	$f(x) \rightarrow ?$

5. YOU'RE FAKE Some rational functions have imaginary asymptotes.

$$f(x) = \frac{x+1}{x^2+4}$$

a. Explain why the function has no REAL vertical asymptotes.

b. Find the non-real vertical asymptotes.

6. ZIT GRAPH Some rational functions look like zits. Gross. Answer the following questions. Don't pop it!

$$f(x) = \frac{8}{x^2 + 4}$$

- a. Make a rough sketch of the graph. State the domain and range.
- b. Find f(2) =
- c. Find x algebraically by setting up an equation and solving it for f(x) = 1

Domain:

- d. What is the maximum value? What is the minimum value?
- e. Find the axis of symmetry.
- f. Find the end behavior.

Left End Behavior	Right End Behavior
$\chi \to -\infty$	$\chi \to \infty$
$f(x) \rightarrow ?$	$f(x) \rightarrow ?$

7. SAT PREP

MULITPLE CHOICE	GRID IN	
Find the numerical value of $\frac{x-2}{2x^2-7x-15}$ when $x = -2$.	Find the value of k so that $\frac{\frac{3}{4}}{\frac{k}{k}} = \frac{3}{4}$	
$(\mathbf{A}) 0$	2	\circ
$(\mathbf{n}) = 0$		$\bigcirc \bigcirc \bigcirc$
(B) $-\frac{1}{7}$		(1)
$(C) \frac{4}{7}$		QQQQ
		3333
(D) $\frac{4}{7}$		(4)(4)(4)(4)
(F) undefined		5555
(E) undermed		0000
		OOOO
		8888
1	1	9999

Range: