9. 4 – Intro to Logarithms

Name:_______________________

Two areas of application for logarithms are how we measure earthquakes and sound. What are those measurements called?
1.
2.

Definition of a Logarithm

\[y = \log_b x \] if and only if \[b > 0, b \neq 1, x > 0 \]

How do you say \(\log_b x \)? “_________________________”

Practice: Rewrite in exponential form

1. \(\log_3 243 = 5 \)
2. \(\log_5 125 = 3 \)
3. \(\log_9 1 = 0 \)
4. \(\log_{\frac{1}{2}} 16 = -4 \)

Practice: Rewrite in logarithmic form

5. \(3^2 = 9 \)
6. \(2^5 = 32 \)
7. \(5^0 = 1 \)
8. \(\frac{3}{\sqrt{64}} = 4 \)

Evaluate the following logarithms (without a calculator):

9. \(\log_2 8 \)
10. \(\log_7 \frac{1}{7} \)
11. \(\log_{13} 81 \)
12. \(\log_{25} 5 \)

Common Logarithm: \(\log_{10} x \) \(\text{write as} \) \(\text{________} \)

Natural Logarithm: \(\log_e x \) \(\text{write as} \) \(\text{________} \)

Evaluate using a calculator:

13. \(\log 13 \approx \)
14. \(\ln 6 \approx \)

Things that simplify...

1. \(\log_b b^x = x \)
2. \(b^{\log_b x} = x \)

Simplify:

15. \(10^{\log 6} \)
16. \(\log_3 9^x \)
17. \(e^{\ln 3x} \)
18. \(\ln e^x \)
9.4 – Intro to Logarithms

GRAPHING LOGARITHMIC FUNCTIONS:

\[g(x) = b^x \text{ where } b > 1 \]

Graph \(f(x) = \log_b x \) above by reflecting \(g(x) \) across the line \(y = x \).

\[g(x) = b^x \text{ where } 0 < b < 1 \]

Graph \(f(x) = \log_b x \) above by reflecting \(g(x) \) across the line \(y = x \).

19. Graph \(y = \log_4 x \)

\[x \quad y \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
\| \]
9.4 Practice - Intro to Logarithms

Rewrite each equation in exponential form.

1) \(\log_{14} 196 = 2 \)

2) \(\log_{18} 324 = 2 \)

3) \(\log_{243} 3 = \frac{1}{5} \)

4) \(\log_{3} 243 = 5 \)

5) \(\log_{7} 49 = 2 \)

6) \(\log_{11} \frac{1}{121} = -2 \)

Rewrite each equation in logarithmic form.

7) \(225^{-\frac{1}{2}} = \frac{1}{15} \)

8) \(19^2 = 361 \)

9) \(7^2 = 49 \)

10) \(3^2 = 9 \)

11) \(18^{-2} = \frac{1}{324} \)

12) \(9^{-\frac{1}{2}} = \frac{1}{3} \)

Evaluate each expression.

13) \(\log_{4} 16 \)

14) \(\log_{6} \frac{1}{216} \)
15) \(\log_2 16 \)

16) \(\log_2 32 \)

17) \(\log_{16} \frac{1}{2} \)

18) \(\log_6 \frac{1}{36} \)

Sketch the graph and identify the domain and range of each.

19) \(f(x) = \log_4 (x - 1) - 5 \)

20) \(f(x) = \log_3 (x + 5) - 5 \)

21) \(f(x) = \log (x - 1) + 5 \)

22) \(f(x) = \log_2 (x + 1) + 3 \)
9.4 Application and Extension

1. a. Evaluate \(\log_3 27 \)
 b. Evaluate \(\log_{\frac{1}{4}} 1 \)

2. Most tornadoes last less than an hour and travel less than 20 miles. The wind speed \(w \) (in miles per hour) near the center of a tornado is related to the distance \(d \) (in miles) the tornado travels. The following model shows this relationship:

\[
w = 93 \log d + 65
\]

a. If a tornado has traveled 13.6 miles, what is its wind speed?

b. If a tornado’s wind speed is 207.3 mph, how far did it travel? \(\text{(hint: use a graphing calculator and graph both sides of the equation.)} \)

For 3-6, the graph of \(f(x) = \log_2 x \) is given on the right along with three coordinate points. For each problem, translate \(g(x) \) by using \(f(x) \) as the “parent” function.

3. \(g(x) = 2 \log_2 x \)

4. \(g(x) = -\log_2 x \)

5. \(g(x) = \log_2 (-x) \)

6. \(g(x) = \frac{1}{2} \log_2 x - 3 \)
7. When Mr. Sullivan has indigestion and flatulence, the disturbance can often feel like an earthquake. On different days, Sully’s students measured the “disturbance” and recorded the information (see table).

<table>
<thead>
<tr>
<th>Minutes after lunch</th>
<th>Magnitude measured on the Ripped It Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.1</td>
</tr>
<tr>
<td>10</td>
<td>3.6</td>
</tr>
<tr>
<td>20</td>
<td>4.2</td>
</tr>
<tr>
<td>35</td>
<td>4.4</td>
</tr>
</tbody>
</table>

a. Using your calculator, find a logarithmic regression model that matches the data. Round to three decimal places. *(Hint: Enter the data into two lists in the calculator, then hit “STAT” and then “CALC” menu. One of the options will be “LnReg.”)*

b. Using your model, estimate the disturbance of an event 45 minutes after Sully’s lunch.

c. In Sully’s class after lunch, a student is surprised to feel a disturbance of 4.1 magnitude. How long has it been since lunch ended? *(Round your answer to three decimals.)*

Algebra Skills:

1. Below are graphs of \(f(x) = |x| \) (thin line) and its translation (bold line). Write an equation of the translation.

2. Simplify the fraction by rationalizing the denominator.

 2. \(\frac{5}{\sqrt{10}} \)

3. \(\frac{3}{2\sqrt{6}} \)

4. Solve by factoring.

 4. \(5x^3 - 10x^2 - 175x = 0 \)

5. \(18x^2 - 15x + 3 = 0 \)

SAT Prep:

1. Simplify: \((2^3x)(2^{5-x}) \)

 (A) \(2^{15x-3x^2} \)

 (B) \(2^{5-3x^2} \)

 (C) \(2^{2x+5} \)

 (D) \(2^{5-2x} \)

2. If \(f(x) = 2(4)^{x+4} \), find \(f(-5) \).

 2. \(f(-5) = 2(4)^{-5+4} = 2(4)^{-1} = \frac{2}{4} = 0.5 \)