9.1 – Exponential Growth

If the variable is not in the ______, then it is _____ an exponential function.

$$y = a(b)^x$$

Condition 1: $a \neq 0$

Condition 2: The base (b) is a positive number other than 1.

Identify if the following functions are exponential. If they are, state the initial value and the growth/decay factor. If they're not, explain why not.

$$f(x) = 2^x$$

Is it exponential?

$$a =$$

$$b =$$

$$f(x) = 4x^{-2}$$

Is it exponential?

$$a =$$

$$b =$$

$$f(x) = -3(2.6)^x$$

Is it exponential?

$$a =$$

$$b =$$

$$f(x) = 10(6)^{-x}$$

Is it exponential?

$$a =$$

$$b =$$

$$f(x) = 2(5)^e$$

Is it exponential?

$$a =$$

$$b =$$

Linear vs. Exponential:

EXPONENTIAL GROWTH FUNCTIONS:

If _____, then the graph will "grow" away from the asymptote as you move left to right.

Range:

Are the following graphs exponential growth functions?

1. Graph $y = \frac{1}{2} \cdot 2^x$

Range:

Domain:

For exponential functions that are in the form $y = a(b)^x$, the graph will go through:

(,) and (,)

and have an asymptote on the x-axis (that's the line y = 0)

Try these examples on your own:

2. Graph
$$y = \frac{1}{2} \cdot 3^x$$

Domain: Range:

3. Graph
$$y = -(2)^x$$

Domain:

Range:

Write your questions and thoughts here!

9.1 – Exponential Growth

TRANSLATIONS

$$y = ab^{x - h} + k$$

To graph the function above, identify points for the graph of $y = a(b)^x$, and then translate the graph horizontally (left/right) by ____ units and vertically (up/down) by ____ units.

4. Graph $y = 2 \cdot 3^{x-1} - 4$

Domain:

Range:

Now summarize what you learned!

Algebra Skillz:

1. Below are graphs of $f(x) = x^2$ (thin line) and its translation (bold line). Write an equation of the translation.

Simplify the fraction by rationalizing the denominator.

2.
$$\frac{1}{\sqrt{2}}$$

3.
$$\frac{3}{2\sqrt{3}}$$

Solve by factoring.

4.
$$x^3 - 7x^2 + 12x = 0$$

$$5. 6x^2 + 13x - 5 = 0$$

9.1 Practice – Exponential Growth

No graphing calculator for these problems!

Name: ____

Next to each function, write "yes" if it is an **exponential** function. If the answer is "no", write an explanation why not.

1)
$$y = -6(3)^x$$

2)
$$y = 3\left(\frac{5}{2}\right)^{-x}$$
 3) $y = 7x^{-3}$

3)
$$y = 7x^{-3}$$

4)
$$y = 3(-4)^x$$

5)
$$y = 92x^{103}$$

6)
$$y = 14(-8)^x$$

7)
$$y = -5(12)^{2x}$$

6)
$$y = 14(-8)^x$$
 7) $y = -5(12)^{2x}$ 8) $y = 13(32)^{-2x}$

For 9-17, sketch the graph of each exponential function by doing the following: Sketch the asymptote, label at least two distinct coordinate points on each graph, and write the domain and range of each function.

9. $y = 2(4)^x$

10. $y = -(3)^x$

11. $y = -2(3)^x$

Domain:

Range:

Domain:

Range:

Domain:

Range:

12. $v = 4(2)^x - 3$

13. $y = -3(2)^{x-1}$

14. $y = 3(3)^{x+2} - 4$

Domain:

Range:

Domain:

Range:

Domain:

Range:

15. $y = (2)^{x+4} + 1$

Range:

16. $y = -2(2)^{x-2} + 2$

17. $y = 2(3)^{x+1} - 5$

Domain:

SAG Prep: 1. Simplify: $(3^{2x+3})(3^{x-6})$

- (A) $(3)^{3x-3}$
- (B) $(3)^{2x^2-18}$
- (C) $(9)^{2x^2-9x-18}$
- (D) $(9)^{3x-3}$

2. If $f(x) = 4(3)^{x-1} + 2$, find f(0).

0	90	90	0
1 0 0 4 6 6 7 8 6	$\bigcirc \bigcirc $	$\bigcirc \bigcirc $	$\bigcirc (-) (-) (-) (-) (-) (-) (-) (-$

9.1 Application and Extension

1. Is the following an exponential function? If no, why not?

$$y = 6(-3)^{2x}$$

2. Write down three coordinate points for the graph of $f(x) = 3(2)^{x-1} + 2$

Recall from your notes that $y = a(b)^x$ represents an exponential function where the initial value is \boldsymbol{a} and the growth factor is \boldsymbol{b} .

Example: Mr. Kelly had 2 friends at the start of 9^{th} grade. This grew by 3% every month (which means a growth factor of 1.03). The model that represents this function is: $F = 2(1.03)^m$

- 3. The student body at K-Town high school is raising money for the "Get Sully a Date" campaign. The *Algebros* contribute \$50 to get things started. After that, the students increase the balance by 45% a week (a growth factor of **1.45**).
 - a. Write a *model* that represents this situation.
- Using your model from part a, how much money will the students raise after a semester (18 weeks)?
- 4. Mr. Brust has played in a recent Faculty vs. Student basketball game. During the first quarter, he had 6 turnovers. His total number of turnovers increased by 13% each quarter (a growth factor of 1.13).
 - a. Write a *model* that represents this situation.
- b. Using the model, calculate how many turnovers he will have halfway through the 4th quarter.
- c. How many quarters would he have to play to have 100 turnovers? (Hint: You have not learned how to solve for a variable in the exponent yet. Instead, graph the line y=100 with a graphing calculator and see where it intersects your model.)
- 5. After www.flippedmath.com was created, the number of hits was tracked. The table shows the number y of hits in each of the first 10 months where x is the month number.

x	1	2	3	4	5	6	7	8	9	10
y	22	39	70	126	227	408	735	1322	2380	4285

a. Enter the values into two separate lists on a graphing calculator.

STEP 1: Hit stat and then option 1.

STEP 2: Enter x-values into List 1.

STEP 3: Enter y-values into List 2.

b. Calculate an exponential model and write the equation below. (Round to 3 decimals.)

STEP 1: Hit STAT, then right for the "CALC" menu.

STEP 2: Scroll down until you can choose "ExpReg"

STEP 3: Hit Enter and calculate the "a" and "b".

y = _____

- c. According to your model from part b, how many hits do you expect in the 12th month?
- d. According to your model in part b, how many hits would there be in the 41st month? What is wrong with this number?